The Mega Menu

Multiple menus to choose from. Each drag-n-drop customizable.

Premium Pack

One flexible templates series to rule them all. Everything you need to build an awesome Hubspot website.
Force actuator datasheet

Incredible Support

Questions are bound to pop up. When they do, you can expect a fast and detailed response via chat or email.
Learn More

Additional Services

Need a little extra help building your website? I've got you covered and over a range of design and development services.
Learn More

OptoFidelity Blog

5 min read

Characterizing Augmented Reality Displays Based On Waveguide Gratings

By Janne Simonen on 6/5/19 9:00 AM

Diffractive waveguide gratings are one of the most promising display technologies for head-mounted augmented reality (AR) devices. Verifying the quality of these gratings requires extremely accurate optical measurements, a key expertise at OptoFidelity.

Continue Reading
4 min read

HMD UX testing – Introducing absolute tracking of XR content

By OptoFidelity on 1/24/19 4:09 PM

Maturity of AR/VR/MR devices is improving significantly during 2019. In order to offer seamless UX for consumers, more comprehensive testing methods are needed. A novel content tracking method for AR/VR/MR testing purposes is introduced by OptoFidelity, the leading test solution provider for HMD UX testing.

In 2019, we can expect a wealth of exciting virtual and augmented reality devices arriving: for example, Oculus is going to release the standalone Quest headset, and Nreal raised $15M of funding to produce a sunglass-sized AR headset. In CES 2019, there were almost a hundred exhibitors in the AR/VR Gaming category.

Quick development of the new technology gives rise to the need to verify performance in product development as a part of continuous integration. This post focuses on measuring head tracking accuracy, which is comprised of many measurable elements: drifting, jitter, motion-to-photon latency, cross-axis coupling… you name it!

Kick-start for HMD UX testing was done in 2017, when OptoFidelity´s first offering BUDDY-1, previously known as VR Multimeter was launched. BUDDY-1 is a solution for benchmarking the motion-to-photon latency with one degree of freedom. Our BUDDY testers are equipped with a smart camera which captures and analyzes the frames displayed on the headset. BUDDY-1 tracks the optical flow of a target pattern placed in the virtual world and compares that to the physical rotation angle over time, yielding motion-to-photon time. BUDDY-1 is a good work horse for basic motion-to-photon latency measurement e.g. to catch some fatal performance regressions.

Continue Reading
4 min read

Novel HMD testing technology – Optical measurement of VR headset tracking performance

By OptoFidelity on 10/11/18 9:00 AM

OptoFidelity worked in co-operation with University of Jyväskylä, Department of Physics. Our co-operation was related to academic research in the area of HMD testing technology. Our interest was to find new optical measurement technologies and methods for VR headset tracking performance. As an end result, we developed a novel technology for testing HMD´s. If tracking performance of HMD is poor, it will effect drastically to end user experience. OptoFidelity has been working with user interface testing for years. As HMD´s are getting more and more popular, we believe better testing technology is needed as well.

One of the most popular topics in today’s smart device industry and research is the development of virtual and augmented reality (VR/AR) headsets. State-of-the-art, room-scale implementations utilize multiple cameras and sensors to find the position and orientation of the user’s head in the surrounding space. This is called six degrees-of-freedom (6DoF) tracking. Simultaneous Localization and Mapping (SLAM) algorithms, familiar from robotics, are also utilized to make the headset better adapt to its surroundings by recognizing walls and other obstacles. Qualcomm, for example, has implemented SLAM in its new mobile processor [1].

The quality and accuracy of the head tracking are key contributors to the virtual reality experience. Bad performance of the tracking may cause nausea or simply undermine the credibility and immersivity of the virtual reality experience. For the development of the devices and the content, an objective way of assessing the behavior of tracking is necessary. The high quality of the tracking may be quantified by observing e.g., the latency between the user’s motion and the respective update of the display content (motion-to-photon latency), jitter (random shaking of the content) or drifting.

There are several possible ways of testing the tracking performance. Given access to suitable APIs of a headset, one may record and investigate data from the headset’s tracking system, graphics stack or some other components. Another example is application-to-photon latency measurement, where the graphical content is changed. The respective change of the display is observed by an external sensor (such as a color sensor or a camera), and latency between the two events is measured.

Continue Reading
2 min read

Photonics in test solutions – Photonics company of the year

By OptoFidelity on 6/26/18 4:12 PM

OptoFidelity was nominated by Photonics Finland as the Photonics Company of The Year. We are very pleased and proud of this nomination. We took the opportunity seriously and had a little celebration at our office the other day. While having a glass of sparkling wine with our team, we also discussed some recent experiences with photonics and its relation to testing. We have been investing in the photonics industry for years. And a few truly interesting cases were brought up by the team. ”How do testing and photonics, and specifically test robotics and photonics, fit together?” you might ask.  

Continue Reading

Featured